Ed Harris: Casting and reloading the .38/.357
(Editor’s Note: for those who don’t know him, C.E. ‘Ed’ Harris is an engineer who’s worked for Ruger and the NRA. Ed is one of the great repositories of technical shooting knowledge in the field; his expertise extends to all areas of shooting, and trust me when I tell you that he can’t be stumped. I’ve tried. Ed has forwarded several articles to publish, and I’m going to start with one of particular interest to me.)
Today’s article is about casting and reloading the .38 Special and .357 Magnum cartridges. Ed has a particular interest in bullet casting and reloading, and this is his primer on the equipment and techniques needed to cast and reload bullets for these great cartridges. He’s stuffed a ton of information into this article, so read carefully!
Q: I read your articles on the .38 Special with great interest. My wife and I live out in the country, far from town. We have decided to buy two revolvers for personal defense and a lever-action utility rifle, which uses the same ammo. I reload rifle ammunition with jacketed bullets for hunting, but am new to bullet casting. I want more production capacity than my single-station press. Please recommend a progressive reloading package for the 38/357 which to include casting equipment & mould. I would appreciate suggestions as to cheap sources for components to load in large quantity.
A: If you intend to cast your own bullets, do not use the same casting pot to render your dirty, gleaned scrap lead into ingots. Instead, get a propane fired turkey cooker or plumber’s burner with round-bottomed, cast iron pot which will hold about 50 pounds or more of melted alloy at a time.
Buy no fewer than six ingot molds; ten are better. Use the propane pot outdoors to render your scrap lead alloy into ingots. Wear coveralls with long sleeves, a floppy hat, gloves and full face shield when you do this!
Automobile wheel weights or indoor range backstop scrap work fine for revolver bullet alloy. Range scrap is more troublesome to deal with, but the jacket material you skim off, after you pull out any steel with a “cow magnet,” is worth more than enough to a scrap dealer to pay for the propane it takes to melt it. With luck you may have a little extra to trade for roll-ends of tin bearing solder, wheel weights, type metal etc.
While many experienced casters prefer to use a dipper, most people find a bottom-pour pot easier to learn with. I use an RCBS 20-lb. bottom pour pot with a pair of molds and handles, alternating between them, by setting each one down after it is filled. It will solidify while I open, dump and refill the other. This provides a consistent mold temperature, necessary to get good castings.
I cast outdoors on a covered, screened in porch to ensure good ventilation, and use an electric hotplate to preheat the molds. This is important, especially in winter. Placing a layer of plain crushed clay kitty litter over the melt helps maintain heat and reduces the need for frequent fluxing.
A pair of double-cavity RCBS or Saeco molds present the best value. Or buy a pair of LBT or Saeco 4-cavity blocks if you want higher production.
For general use in the .38 / .357 lever-actions and revolvers, the Cowboy style rounded flat-nose designs work well if you get a bullet with meplat not less than 1/2 of bullet diameter for hunting purposes. Suitable designs are the RCBS 38-158CM or Saeco #358.
For hunting use a hollow-point bullet is useful. On the Saeco 4-cavity blocks only the center 2 cavities can be modified for hollow-point, because of the way the sprue plate hinge, handle screws and alignment pins are located. This will produce a pair of solids and a pair of hollow-points with each pour.
With double-cavity Saeco and RCBS blocks both cavities may be modified using the inset bar conversion from http://www.hollowpointmold.com
You may like one set of blocks modified for hollow point, and use the other to cast solids. Either way you have hunting and practice bullets, which will feed from the lever-action rifle. SWCs may not.
The best sources I have found for buying powder and primers are either Widener’s or Graf & Sons. My shooting buddies and I buy primers by the case of 5000 at a time, and powder in 8-lb. kegs. An 8-lb. keg of Bullseye will load 16,000 rounds of .38 Special at 3.5 grains per pop. An 8-lb. keg of #2400 will load 4000 rounds of .357 Magnum at 14 grains per pop.
Graf will let you combine powder and primers in the same shipment under one hazmat fee for up to a 50-lb. box, which gets you 20,000 small pistol primers, a keg of #2400 for magnum loads and a keg of Bullseye for .38 Specials with nothing left over.
You won’t get reliable expansion of cast hollow points from a 2 inch snubby unless bullets are cast soft, 8-10 BHN, such as 1:25 tin/lead alloy, or 50-50 wheelweights and plumber’s lead, with no more than 2% tin added in in the form of bar solder – and only if needed to get sharp fill out of the bullets.
You want to cast bullets when the mold blocks are hot enough that bullets fill out sharply. Uniform frosting of well-filled bullets is perfectly OK. This fuzzy surface of dentrite arms look under an SEM (scanning electron microscope) like you’re flying low over a pine forest. The porous surface holds tumble-on lubes better.
You don’t need to quench-harden bullets up through .38 Special +P. As-cast wheel weights or common range backstop scrap is about 10-12 BHN, and is fine for standard pressure loads up to about 20,000 psi.
Bullets cast from wheel weights and hot enough to be uniformly frosted, when dropped directly from the mold into water to quench, will precipitation harden to about 24-28BHN and which will stand up to 40,000 psi.
Quench solid-nosed bullets for .357 and .44 magnum loads when necessary to prevent leading, but don’t count on quenched hollow-point bullets expanding at all if you do.
To enhance expansion of properly designed hollow-point bullets from a sturdy, short-barreled revolver, such as the Ruger SP101, you may safely use up to 4.0 grs. of Bullseye with a 158-grain hollow-pointed bullet seated not less than 1.40” overall. This approximates +P velocity, vs. a “standard pressure” charge of 3.5 grains, normally used with cowboy bullets crimped normally, or a double-end wadcutter seated out to 1.20” overall.
For approximating the +P+ in .38 Special brass in the Marlin rifle or revolvers designed for .357 magnum, such as Rugers, L-frame and N-frame S&W, you could use 10 grs. of #2400 with the Saeco or RCBS Cowboy slugs, with WSP or Federal 200 primers, seated and crimped in their normal crimp groove. Do NOT use this load in pre-1974 Colts, Charter Arms, K or J-frame S&Ws unless originally chambered for .357 ammunition, because pressure exceeds industry +P standard by about 15%.
For loading .357 Magnums at supersonic velocities in revolvers or for rifles use an alloy not softer than wheel weights, 12BHN. With plain-based bullets you could load 11-12 grs. of #2400 in .357 brass with a 158-gr. cast bullet, the exact charge to be determined by whether you get unburned powder which may jam revolvers if any gets under the extractor, or leading which impairs accuracy.
Using a plain-based bullet without a gas check, keep revolver velocity subsonic, not over about 1080 f.p.s. The same loads will get from 1200-1400 f.p.s. in the Marlin, versus about 1600-1700 from an 18 inch barel for a “maximum .357 load.” Keep charges with plain based cast bullets in the Marlin rifle about 10-15% below maximum to avoid impaired accuracy caused by bore leading.
In my experience 10 grs. of #2400 with WSP or Federal 200 primers is the least you can load in .357 brass and get acceptable ballistic uniformity. At 11-12 grains in .357 brass only, you have a very satisfactory “medium velocity” load, a bit lighter than factory, but still heavier than .38 Special +P+.
I feel that gas checked bullets are an unnecessary expense in revolvers, because the GC diameter is usually insufficient to seal the cylinder throats. They also cost about $30 per thousand and will require that you buy an expensive lubricating and sizing machine to put them on. That money will buy a good supply of primers and powder.
Instead, save your money by using plain based bullets, of moderate hardness, cast from cheap scrap allloy such as wheel weights. Keep velocities under 1100 f.p.s. in revolvers, and below 1400 f.p.s. in the rifles.
If you need a magnum load approximating factory velocity, buy a few hundred 158-gr. jacketed soft point bullets for rifle use and use 14 grs. of #2400, which is about 1/2 grain below maximum as published by Speer No. 13 or later. This will give about 1650 fps in the Marlin. Such loads are apparent by their distinct appearance so there is no guessing whether it is “hot” or not.
If you will use your compact revolver a lot for field shooting, consider a double-end wadcutter such as the Saeco #348 for one of your molds. Then pick a Cowboy style flat-nose for rifle use.
Wadcutters can be used for small game hunting in lever-action rifles as a “two-shooter,” inserting a round directly into the chamber, closing the action, and loading only one round at a time into the magazine tube. Each time you fire a shot and work the lever, you can shove a replacement wadcutter past the loading gate. You cannot fill the magazine tube with .38 Special rounds less than 1.4 inches overall, because two at a time will feed out onto the lifter and jam the gun.
Ideally you want bullets to cast of correct diameter so they do not require sizing. Then you can bulk lube with Lee Liquid Alox and use the money you save by not buying a bullet lubricator and sizer to buy powder and primers.
If you really want a progressive loading tool for loading multiple thousands of rounds, get the Dillon RL550B. However, if your requirements are less than 500 rounds a month, I would use a single-station press. If you have not used a progressive reloading machine before, and do not have an experienced mentor within convenient telephone distance, stay with the single-station press you know well.
For plain based revolver ammo there is no advantage to go any harder than about 13 BHN. Commercially cast bullets such as Meister, Lasercast, etc. are made from a 92Pb-6Sb-2Sn alloy, about 16 BHN, harder than necessary for non-magnum loads. They do so because this common commercial “hardball” or “magnum” alloy is widely available in one-ton heat lots, casts well from the automated Magma Engineering machines, and produces “pretty” bullets for marketing purposes, which are not damaged in shipping.
Hard lube which requires a heated lubricating and sizing machine is used for similar marketing purposes, because it is non-sticky, stays in the grooves, doesn’t melt in summer heat and goes through progressive loading machines well. But hard lube is less able coat the bore, and unless bullet fit is perfect, may result in bore leading at standard pressures in the .38 Special. Soft alloys and lubes in moderate loads are more trouble-free for the novice.
Commercial cast bullets often lead more than softer home cast ones because the manufacturers size their product to fit the tightest minimum bore and chamber to prevent function problems. Novices who buy them don’t know which size is correct. The old folklore of old Lyman manuals to size bullets to groove diameter is incorrect. Bullets should be sized to fit the ball seat of the rifle chamber or revolver cylinder.
If bullets are too hard, undersized, and inadequately lubricated with a hard lube, they will lead. A very common misconception is that cast bullet loads lead because the alloy is too soft. The opposite is usually the case.
An alloy harder than about 12-13 BHN is not going to expand when cast in a hollow-point bullet. Full .357 loads generating over 1400 fps when fired from a rifle may fragment, but not “mushroom.” My advise is to use straight wheel weights or range backstop scrap. Add 1/2 pound of 50-50 bar solder per 20 lb. potful when needed to get good castings.
Bullets of 12 BHN will not expand in standard pressure .38 Special revolver loads, but will somewhat in +P and do just fine when fired in the rifle or .357 or +P+ ..38 Special revolver loads over 1000 fps.
If you want to get expansion at standard pressures in a revolver cut wheel weight alloy 50-50 with soft plumbers lead, adding the same 1/2 pound of 50-50 solder, only if needed to get good castings. This alloy goes 8-10 BHN, does fine in subsonic rifle loads or up to .38 Special +P with 4 grs. of Bullseye in .38 cases, but you may get some leading after firing a dozen rounds of +P loads. Accuracy is OK for hunting purposes.
Brush the bore when done shooting and leave wet with bore cleaner, then just wipe the bore and chambers with a dry patch before shooting.
If reduced to using (free!) mixed head stamp, range pickup brass, tumble clean it in untreated corncob to remove dirt and grit before sizing. After sizing, do the best you can to sort it into batches of like head stamp sharing the same type face, identifying knurls, etc. Separate plated cases from plain.
Learn to identify and keep separate any cases originating from factory loaded wadcutter match ammo. Treat them as if they were gold! Wadcutter brass is identified by either one, or sometimes two knurls or cannelures at the midpoint of the case’s length.
Their purpose is to prevent a wadcutter bullet being dropped into a loose-mouthed, powder charged case, from falling below flush with the case mouth. This maintains proper position until the bulleted, charged case reaches the crimping station.
The loading machines used by the ammunition factories full-length profile the case sidewall to fit gently, but tightly against the shank of the soft-swaged, hollow-based wadcutter bullet. It uniformly but lightly crimps the case mouth to remove any flare, imparting only a slight radius at the case mouth to ease loading into the chambers. Its design intent is to avoid at all cost any damage to the fragile, soft- lead bullet, which would impair accuracy.
This is also the principle of the Lee Factory Crimp Die and is why you should buy the Lee carbide die set to the exclusion of all others. The Lee Factory Crimp die does not depend upon case length to determine strength of crimp. It doesn’t care whether case mouths are thin or heavy. Individual rounds are profiled full-length so that none will exceed maximum cartridge dimensions. This prevents tolerance stacking of oversized bullets in thick wall cases, which could cause a bulge that will jam your gun.
Cast bullets may be loaded unsized and simply tumbled in Lee Liquid Alox. If bullet sizing is necessary, this is done by compression inside the die, rather than by shear in an expensive, unnecessary lubricating and sizing machine.
Because wadcutter brass has a thinner case wall, intended to gently handle a soft lead bullet, it is work hardened less in assembly, so it will last longer!
Brass used for +P service loads often has a heavy knurl or cannelure closer to the case mouth, which is used to hold the bullet against the primer blast and maintain heavy bullet pull of a thicker case which provides a tight fits necessary for acceptable ballistic uniformity of slower powders. Such brass has a harder final anneal and is more heavily work hardened in assembly, so it may crack after only a few reloads, especially if it has been nickel plated. When obtained as once-fired brass, use this for your “shoot and let fly” combat practice ammo.
If you intend to buy new brass, get plain, unplated, uncannelured cases, from Starline, Winchester or Remington. Plated brass was once used to reduce corrosion of rounds carried in leather looped cartridge belts. Today it is done mostly for marketing appearance, so that old stock does not take on a patina and “look old.”
Plated cases will not last long in repeated reloads as plain brass, but some brands fare better than others. Winchester uncannelured, plated cases last longer than similar Remington. Federal +P and +P+ plated brass also seems OK. Sellier & Bellot seems the worst. Reload only once, use it for shoot & let fly, or save for trade to the scrap dealer.
- Posted by Grant Cunningham
- On December 10, 2011